반응형 전체 글24 [이기적 유전자-리처드 도킨스] 밈(Meme)의 어원은 어디서? 이기적 유전자작가 리처드 도킨스 출판 을유문화사 발매 1993.11.01 아주 오래 전, 지금은 작고하신 스티븐 호킹 박사가 "우주 탄생에 신은 개입하지 않았다"는 발언으로 종교와 과학의 오랜 논쟁이 다시 수면 위로 떠올랐던 적이 있습니다. 원래 과학과는 거리가 멀어 평소 같으면 무심코 지나쳤을 뉴스였으나 하나의 이름이 눈길을 끌었습니다. 바로 리처드 도킨스입니다. 그는 스티븐 호킹의 새로운 이론을 '물리학계의 진화론'에 비유하며 "호킹 박사가 물리학계의 신의 존재 논란을 결말지을 결정적 시도를 하고 있다"며 지지를 보냈습니다. 마침 「이기적 유전자」를 읽고 있던 때라 그의 말이 더욱 의미심장하게 느껴졌습니다.유전자의 이기성과 생명의 진화리처드 도킨스는 「이기적 유전자」를 통해 대다수가 생명 정보의 저장.. 2024. 6. 26. [혼자 공부하는 머신러닝+딥러닝] KNN 회귀 알고리즘 [혼자 공부하는 머신러닝+딥러닝] KNN 회귀 알고리즘안녕하세요, 오늘은 머신러닝 스터디 네 번째 시간으로 최근접 이웃 회귀 알고리즘에 대해 다뤄보겠습니다. 지난 시간에 분류 문제를 KNN 알고리즘을 사용해 해결했었는데요, 이번 시간에는 회귀 문제를 해결해 보도록 하겠습니다.회귀란 무엇일까요?분류 문제는 데이터가 특정 클래스에 속하는지 예측하는 것이고, 회귀 문제는 연속적인 값을 예측하는 것입니다. 예를 들어, 생선의 길이와 무게를 가지고 도미의 무게를 예측하는 것이 회귀 문제입니다.데이터 전처리데이터 전처리는 모델이 데이터의 스케일에 영향을 받지 않도록 하는 중요한 과정입니다. 여기서는 표준점수(z-score)를 사용해 스케일링을 진행했습니다. 넘파이의 mean과 std 함수를 사용하여 평균과 표준 편.. 2024. 6. 21. [혼자 공부하는 머신러닝+딥러닝] 데이터 전처리 데이터 전처리와 K-최근접 이웃 알고리즘 안녕하세요! 오늘은 데이터 전처리와 K-최근접 이웃(K-NN) 알고리즘에 대해 알아보겠습니다. 이번 포스팅에서는 데이터 전처리의 중요성과 K-NN 알고리즘의 개념을 쉽게 설명하겠습니다.데이터 전처리데이터 전처리는 머신러닝 모델의 성능을 높이는 중요한 과정입니다. 전처리는 데이터의 품질을 높이고, 모델이 데이터를 효과적으로 학습할 수 있도록 돕습니다. 특히, 특성(feature)들의 스케일이 서로 다를 때, 이를 맞추는 작업이 필요합니다.예제: 생선 분류우리는 도미와 빙어를 분류하는 문제를 다루고 있습니다. 생선의 길이와 무게 데이터를 사용하여 도미인지 빙어인지를 예측합니다.데이터 준비먼저, 생선의 길이와 무게 데이터를 파이썬 리스트로 준비합니다.도미_길이 = [.. 2024. 6. 20. [혼자 공부하는 머신러닝+딥러닝] 훈련세트&테스트세트 혼자 공부하는 머신러닝+딥러닝: 훈련 세트&테스트 세트안녕하세요! 오늘은 머신러닝 모델을 훈련할 때, 훈련 세트와 테스트 세트로 데이터를 나누는 방법에 대해 알아보겠습니다. 이를 통해 모델의 성능을 제대로 평가할 수 있습니다.1. 데이터 나누기머신러닝 모델의 성능을 평가하려면 데이터를 훈련 세트와 테스트 세트로 나누어야 합니다. 훈련 세트는 모델을 학습하는 데 사용되고, 테스트 세트는 모델의 성능을 평가하는 데 사용됩니다.2. 간단한 예제도미와 빙어의 길이와 무게를 이용해 분류하는 문제를 예로 들어보겠습니다. 우리는 K-최근접 이웃 알고리즘(K-NN)을 사용해 이 문제를 해결했습니다. 먼저, 도미와 빙어 데이터를 준비하고 시각화했습니다. 그 다음, 훈련 데이터를 사용해 모델을 학습시키고, 테스트 데이터를.. 2024. 6. 19. 이전 1 2 3 4 5 6 다음 반응형